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Abstract. This paper is devoted to study an association between hook type enumeration

and counting integer partitions subject to parity of its parts. We shall primarily focus on

a result of Andrews in two possible direction. First, we confirm a conjecture of Rubey and

secondly, we extend the theorem of Andrews in a more general set up.
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1. Introduction

The field of hypergeometric series and partitions have been closely connected ever since

Euler’s primarily work on the subject. Since then it became a standard method to use results

in q-series in order to aid the proofs of numerous partition identities. Study on parity of parts

in partitions sprout in work of Euler, Sylvester, Franklin, Glaisher, Fine and Andrews among

others. In recent years, parity study in partitions became significant. Andrews’ study in [2]

continued canonically with work of Bringmann and Jennings-Shaffer [4] which connects to

partial theta functions and often with modular forms. Another beautiful aspect of studying

parity in partitions has been done in [3] by looking through the lens of Ramanujan’s theta

functions.

We have endeavoured to show the impact of hook type enumeration involved in our construc-

tion by proving a conjecture made by Rubey (cf. Theorem 1.3) on the nature of partition

statistics studied by Andrews in Theorem 1.1. In the same spirit of enquiry we also provide

generalization of Theorem 1.1 which equates two different partition functions based on parts

separated by parity. Our aim has been to show how simple and elegant combinatorial argu-

ments can be in a sense unify disparate areas of the subject by a common thread.

A partition of n ≥ 0 is a non-increasing sequence λ = (λ1, λ2, ...., λ`) of positive integers whose

sum is n, denoted by λ ` n. p(n) denotes the number of partitions of n and P (n) is the set of

all partitions of n. Define ` = `(λ) to be the number of parts in λ, a(λ) to be the largest part

of λ and mult(λi) to be the multiplicity of the part λi. We also use λ = (λm1
1 . . . λm`` ) as an

alternative notation for partition. For partitions λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ) define

the sum λ+µ to be the partition (λ1+µ1, λ2+µ2, . . . ). Similarly, define the union λ∪µ to be

the partition with parts {λi, µj}, arranged in non-increasing order. If λ = (λ1, λ2, ...., λl) ` n,

we may define a new partition λ
′

= (λ
′
1, λ

′
2, ...., λ

′
m) ` n (where m is the largest part of λ) by
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choosing λ
′
i as the number of parts of λ that are ≥ i. The partition λ

′
is called the conjugate

of λ. Notice that the graphical representation of the conjugate is obtained by reflecting the

Young diagram (which we will define in few lines) in the main diagonal. For example, if

λ = (6, 3, 3, 2, 1), then conjugate of λ is λ
′

= (5, 4, 3, 1, 1, 1).

To each partition λ ` n we associate Yλ, the celebrated graphical representation called the

Young diagram of λ. For each box v in Yλ, define the hook length of v, denoted by hv(λ), to

be the number of boxes u such that u = v or u lies in the same column as v and above v or

in the same row as v and to the right of v. The hook length multiset of λ, denoted by Hλ,

is the multiset of all hook lengths of λ. Each hook length h can be split into h = a + l + 1,

where a is the arm length (the no. of boxes to the right in the same row) and l the leg length

(the no. of boxes above in the same column). The ordered pair (a, l) is called hook type of

the chosen box in the Young tableau. A hook length tableau (resp. hook type tableau) is

obtained by filling in the boxes of the Young diagram with hook length (resp. hook type) of

each box. The boxes will be colored according to the index of the parts in the color partition

considered.

For λ = (6, 3, 3, 2) ` 14, the hook length tableau is

2 1

4 3 1

5 4 2

9 8 6 3 2 1

Figure 1: Hook length tableau for the partition λ = (6, 3, 3, 2)

and the hook type tableau of Yλ is

(1, 0) (0, 0)

(2, 1) (1, 1) (0, 0)

(2, 2) (1, 2) (0, 1)

(5, 3) (4, 3) (3, 2) (2, 0) (1, 0) (0, 0)

Figure 2: Hook type tableau for the partition λ = (6, 3, 3, 2).

This paper principally aims to study problems on parity of parts in integer partitions origi-

nated from the work of Andrews [2]. Rubey conjectured that there may be a possible bijective

proof of Andrews’ theorem other than the given one in proof of Theorem 1.1 through which

we can observe that there exists an one to one correspondence between total number of parts

strictly greater than 1 and total number of boxes with a specific hook type respectively in

partitions enumerated by Od(n) and podeu(n), given in Theorem 1.3. Whereas, studying the

structure of Young diagram we will see how one can extend the principle of bijection given by
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Andrews in [2, Theorem 1.3] to get partition identity by relaxing some constraints on parts

in Theorem 1.5.

Theorem 1.1. [2, Theorem 1.3] Let Od(n) denote the number of partitions of n in which

the odd parts are distinct and each positive odd integer smaller than the largest odd part must

appear as a part. Then

podeu(n) = Od(n),

where podeu(n) denotes the number of partitions of n in which each even part is less than each

odd part and odd parts are distinct.

For example, the 7 partitions enumerated by Od(8) are 8, 6 + 2, 4 + 4, 4 + 2 + 2, 4 + 3 + 1,

3 + 2 + 2 + 1, 2 + 2 + 2 + 2 and those enumerated by podeu(8) are 8, 7 + 1, 5 + 3, 6 + 2, 4 + 4,

4 + 2 + 2, 2 + 2 + 2 + 2.

Definition 1.2. Let Od(n) (resp. P odeu (n)) denote the set of all partitions counted by Od(n)

(resp. podeu(n)).

Q>1(λ) is defined to be the total number of parts strictly greater than 1 in λ ∈ Od(n) and

Q>1(n) =
∑

λ∈Od(n)

Q>1(λ).

B(o,0)(λ) denote the total number of boxes with hook type (o, 0) for odd positive integers o in

Yλ where λ ∈ P odeu (n) and

B(o,0)(n) =
∑

λ∈P odeu (n)

B(o,0)(λ).

As an instance, for n = 8

Od(8) Q>1(λ) P odeu (8) B(o,0)(λ)

8 1 8 4

6 + 2 2 7 + 1 3

4 + 4 2 6 + 2 3

4 + 3 + 1 2 5 + 3 2

4 + 2 + 2 3 4 + 4 2

3 + 2 + 2 + 1 3 4 + 2 + 2 2

2 + 2 + 2 + 2 4 2 + 2 + 2 + 2 1

Total Q>1(8) = 17 Total B(o,0)(8) = 17

Theorem 1.3. [5, Rubey’s Conjecture] For all positive integers n,

Q>1(n) = B(o,0)(n)

and for µ ∈ P odeu (n),

B(o,0)(µ) =
⌊a(µ)

2

⌋
.
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Let poueu(n) denote the number of partitions such that odd parts of a partition are unre-

stricted and each even part is less that each odd part of the considered partition and the set

of all such partitions is denoted by P oueu (n). For example, there are 12 partitions enumerated

by poueu(9) are 9, 7 + 2, 7 + 1 + 1, 5 + 4, 5 + 3 + 1, 5 + 2 + 2, 5 + 1 + 1 + 1 + 1, 3 + 3 + 3, 3 +

3 + 1 + 1 + 1, 3 + 2 + 2 + 2, 3 + 1 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.

Definition 1.4. For λ ` n,

OMax (λ) := greatest odd part of λ and OMax(λ) = 0 if λ has no odd part,

EMax (λ) :=

{
greatest even part of λ, if even parts occur in λ,

0, otherwise,

OEMaxSum (λ) := OMax(λ) + EMax(λ),

OEMaxDiff (λ) := |OMax(λ)− EMax(λ)|,

Ou(n) := {λ ` n : for any odd k < OMax(λ); k must appear as a part of λ},

O∗u(n) := {λ ∈ Ou(n) : OEMaxDiff (λ) = min {OEMaxDiff (λ
′
) : λ

′ ∈ Ou(n)}},

o∗u(n) :=
∣∣∣{λ ` n : λ ∈ O∗u(n)}

∣∣∣.
For example, there are 12 partitions enumerated by o∗u(9) are 8 + 1, 6 + 2 + 1, 5 + 3 + 1, 4 +

4 + 1, 4 + 3 + 1 + 1, 4 + 2 + 2 + 1, 3 + 2 + 1 + 1 + 1 + 1, 3 + 3 + 1 + 1 + 1 + 1 + 1, 3 + 1 + 1 +

1+1+1+1+1, 2+2+2+2+1, 2+2+2+1+1+1, 1+1+1+1+1+1+1+1+1; we see

that according to our definition, the partition λ = (6, 1, 1, 1) /∈ O∗u(9) but (4, 3, 1, 1) ∈ O∗u(9).

Theorem 1.5. o∗u(n) = poueu(n).

Remark 1.6. From the above Theorem 1.5, it is clear that if we restrict ourselves to the

distinct odd parts, then Theorem 1.1 follows as a corollary. Moreover, following the bijection

given in the proof of Theorem 1.5, it follows that total number of odd parts in O∗u(n) is equal

to the total number of odd parts in P oueu (n), whenever odd parts occur in O∗u(n). Let λ ∈ O∗u(n)

with λo consists of only odd parts in λ, say `(λo) = r and then following three Cases in the

Proof of Theorem 1.5, we see that the resulting partition µ ∈ P oueu (n) has also r odd parts.

We can also observe that the same odd statistics follows in Theorem 1.1.

2. Proof of Theorem 1.3 and 1.5

Proof of Theorem 1.3: First, we note that for λ = (λk11 . . . λkmm ) ` n, we have

B(o,0)(n) =
⌊λm

2

⌋
+
m−1∑
i=1

⌊λi − λi+1

2

⌋
. (2.1)

We construct a bijection φ : Od(n) −→ P odeu (n) by defining it on odd (resp. even) component

of a partition λ ∈ Od(n).



HOOK TYPE ENUMERATION AND PARITY OF PARTS IN PARTITIONS 5

Let λ ∈ Od(n) with all parts odd. Following the definition of Od(n), we can write λ := λo =

(2t− 1, 2t− 3, . . . , 3, 1) ` t2 for a non-negative integer t. We define

φ(λo) = λo (2.2)

and clearly, λo ∈ P odeu (n). So, φ is a one to one map. Consequently, Q>1(λo) = t− 1 and by

(2.1), it follows that

B(o,0)(φ(λo) = t− 1.

As a trivial remark, we note that
⌊
a(φ(λo))

2

⌋
=
⌊
2t−1
2

⌋
= t− 1.

Now, for λ ∈ Od(n) with even parts only, say, λ := λe = (µ
mµ1
1 . . . µ

mµs
s ). Define φ(λe) =

2(12 λe)
′

with multiplication and division by 2 is component-wise. Following Definition ??,

for all 1 ≤ i ≤ s

φ(λe) =
(
µ̃1

µs/2 µ̃2
(µs−1−µs)/2 . . . µ̃s

(µ1−µ2)/2
)

with µ̃i = 2
s−i+1∑
j=1

mµj (2.3)

and therefore, φ(λe) ∈ P odeu (n).

Let assume φ(λe) = φ(λ∗e) with λe, λ
∗
e ∈ Od(n). For λe = (µ

mµ1
1 . . . µ

mµs
s ) and λ∗e =

(µ∗1
m∗µ1 . . . µ∗s

m∗µs ), from (2.3), we can observe that s = t, mµi = m∗µi and µi = µ∗i . This

implies φ is a one to one map.

So, Q>1(λe) =
∑s

i=1mµi and by (2.1), it follows that

B(o,0)(φ(λe)) =
s∑
i=1

mµi .

Moreover,
⌊
a(φ(λe))

2

⌋
=
⌊
µ̃1
2

⌋
=
∑s

i=1mµi .

In a more general set up, consider λ ∈ Od(n) with both odd and even component, namely,

λo with `(λo) = t for some strictly positive integer t and λe = (µ
mµ1
1 . . . µ

mµs
s ). We define

φ(λ) = φ(λe ∪ λo) = φ(λe) + φ(λo) where addition of parts is being done component-wise.

From (2.2) and (2.3), it follows that φ(λ) ∈ P odeu (n) and by similar argument as explained in

the odd and even cases, φ is one to one.

By definition of λ, it follows that

Q>1(λ) = t− 1 +

s∑
i=1

mµi (2.4)

and by (2.1), we have

B(o,0)(λ) = t− 1 +

s∑
i=1

mµi . (2.5)

Furthermore, ⌊a(φ(λ))

2

⌋
= t− 1 +

s∑
i=1

mµi . (2.6)

Now, it remains to show that φ is onto. Let µ ∈ P odeu (n) and µ has t odd parts with t ∈
Z≥0. Let us consider the partition λo ` t2 with λo = (2t − 1, 2t − 3, . . . , 3, 1). Let µe :=



6 KOUSTAV BANERJEE AND MANOSIJ GHOSH DASTIDAR

1
2(µ − λo) where multiplication (by scalars) and subtraction of parts is component-wise.

Define φ−1(µ) = 2µ
′
e ∪ λo where µ

′
e is the conjugate partition of µe and we observe that

ν := 2µ
′
e ∪ λo ∈ Od(n). We split ν into its even component (resp. odd) by νe (resp. νo).

Following the definition of φ in context of even component, we get the transformed even

component of ν, φ(νe) = 2ν
′
e where ν

′
e is the conjugate partition of νe and νo = λo. Now,

φ(ν) = φ(2ν
′
e ∪ λo) = 2ν

′
e + λo = 2µe + λo = 2(12(µ − λo)) + λo = µ because for λ ∈ Od(n),

φ(λ) = 2λ
′
e + λo where λe are even parts of λ divided by 2.

From (2.6), we can observe that for µ ∈ P odeu (n),

B(o,0)(µ) =
⌊a(µ)

2

⌋
.

Before we conclude the proof, will provide an explicit example to show how the bijection had

been work out. To be consistent with the example given in the Theorem 1.3, for n = 8, the

map φ : Od(8) −→ P odeu (8) described as follows

8 −→ 4 −→ 1 + 1 + 1 + 1 −→ 2 + 2 + 2 + 2

6 + 2 −→ 3 + 1 −→ 2 + 1 + 1 −→ 4 + 2 + 2

4 + 4 −→ 2 + 2 −→ 2 + 2 −→ 4 + 4

4 + 2 + 2 −→ 2 + 1 + 1 −→ 3 + 1 −→ 6 + 2

4 + 3 + 1 −→ {4} ∪ {3, 1} −→ {2} ∪ {3, 1} −→ {1, 1} ∪ {3, 1} −→ {2, 2} ∪ {3, 1} −→ 5 + 3

3 + 2 + 2 + 1 −→ {2, 2} ∪ {3, 1} −→ {1, 1} ∪ {3, 1} −→ {2} ∪ {3, 1} −→ {4} ∪ {3, 1} −→ 7 + 1

2 + 2 + 2 + 2 −→ 1 + 1 + 1 + 1 −→ 4 −→ 8

and for the inverse map ψ : P odeu (8) −→ Od(8)

8 −→ 4 −→ 1 + 1 + 1 + 1 −→ 4

7 + 1 −→ {2} ∪ {3, 1} −→ {1, 1} ∪ {3, 1} −→ {2, 2} ∪ {3, 1} → 3 + 2 + 2 + 1

6 + 2 −→ 3 + 1 −→ 2 + 1 + 1 −→ 4 + 2 + 2

5 + 3 −→ {1, 1} ∪ {3, 1} −→ {2} ∪ {3, 1} −→ {4} ∪ {3, 1} → 4 + 3 + 1

4 + 4 −→ 2 + 2 −→ 2 + 2 −→ 4 + 4

4 + 2 + 2 −→ 2 + 1 + 1 −→ 3 + 1 −→ 6 + 2

2 + 2 + 2 + 2 −→ 1 + 1 + 1 + 1 −→ 4 −→ 8.

�

Proof of Theorem 1.5: Consider the Young diagram Yλ for the partition λ = (λ1, λ2, . . . , λl) ∈
O∗u(n). We separate λ into λo = (λo1 , λo2 , . . . , λor) where 1 ≤ oi ≤ l and λe = (λe1 , λe2 , . . . , λet)

where 1 ≤ ej ≤ l according to the odd and even parts, respectively. Let Yλo and Yλe be the

corresponding Young diagrams of λo and λe. Next, we join Yλo and Yλe by successively ad-

joining their rows with respect to the ordering of the parts in λo, λe, respectively, starting

with the largest one and ending with the smallest one. Call the restricting Young diagram

Yµ. Now, we consider the following three cases

1. If the number of odd parts is equal to the number of even parts in a partition λ ∈ O∗u(n),

then Yµ is with µ ∈ P oueu (n). Since λo = (λo1 , . . . , λor) and λe = (λe1 , . . . , λer) have equal

number of parts, the resulting partition µ = (λo1 + λe1 , . . . , λor + λer). Correspondingly no
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row remains left neither in Yλo nor in Yλe after adjoining.

2. Suppose the number of odd parts is greater than the number of even parts in a parti-

tion λ ∈ O∗u(n); let the difference be t. Then a similar argument shows that the t rows in

Yλo remain left after adjoining of rows of Yλo and Yλe . Therefore, in the resulting Yµ with

µ ∈ P oueu (n), t rows will be positioned in the same order as in Yλo .

3. Suppose the number of even parts is greater than the number of odd parts in a partition

λ ∈ O∗u(n); let the difference be u. Similar to the argument given in (1) we see that u rows

in Yλe remain left after adjoining the rows of Yλo and Yλe . Here u rows will be inserted into

Yλo so that the resulting Yµ with µ ∈ P oueu (n) does not violate the structure of the Young

diagram.

Let µ = (µ1, . . . , µs) ∈ P oueu (n). Separate µ into µo = (µo1 , . . . , µoi) with the odd parts,

µoi ≤ µoi−1 ≤ · · · ≤ µo1 where µoi ≥ µs, µo1 ≤ µ1 and into µe with the even parts. We keep

aside the even component Yµe of Yµ. First, we assume that all odd parts of µ are distinct;

i.e., there are i distinct odd values with µoi < µoi−1 < · · · < µo1 . Now, for all j (1 ≤ j ≤ i),

we extract 2j − 1 boxes from the jth row of Yµo and attach 2j − 1 boxes to Yµo without

violating the structure of the Young diagram Yµo . Now, we break an odd part µot of the

partition µo into (µot − (2v − 1), 2v − 1) with v = i − t + 1, where the part µot corresponds

to the number of boxes in the vth row of Yµo . The Young diagram Yµ̃ obtained from Yµo
by the above construction and adjoining Yµe with it to get the unique resulting Young di-

agram, say Yπ with π ∈ O∗u(n). This is because all the odd parts are distinct and their

corresponding position in Yµ is unique, and hence the resulting partition π ∈ O∗u(n) is the

unique pre-image of the partition µ ∈ P oueu (n). Explicitly, for µ = (µ1, . . . , µs) ∈ P oueu (n) with

µo = (µo1 , . . . , µoi) into odd parts and µe into even parts, then by the construction discussed

before, we have λo = (2i − 1, 2i − 3, . . . , 3, 1) and λe = (µo1 − (2i − 1), . . . , µot − 1) ∪ µe.
Now, define λ = λo ∪ λe ∈ O∗u(n) and considering three cases stated before, we see that λ

transformed to µ.

Next, we consider µo = (µo1 , . . . , µoi) with µoi < µoi−1 < · · · < µo1 with the assump-

tion that µo1 , . . . , µoi occurs with multiplicity k1, k2, . . . , ki, respectively; i.e., a part µot
(1 ≤ t ≤ i) occurs with multiplicity kt. Then we break the kt tuple (µot , . . . , µot) into

((µot − (2v − 1), 2v − 1), . . . , (µot − (2v − 1), 2v − 1)) where the part µot corresponds to the

number of boxes in the vth row of Yµo . Similar argument as before shows that the resulting

partition, say π ∈ O∗u(n). This the concludes the proof with examples for n ∈ {6, 7}:
P oueu (6) −→ O∗u(6) −→ P oueu (6)

6 6 6

5 + 1 3 + 2 + 1 5 + 1

4 + 2 4 + 2 4 + 2

3 + 3 2 + 2 + 1 + 1 3 + 3

3 + 1 + 1 + 1 2 + 1 + 1 + 1 + 1 3 + 1 + 1 + 1

2 + 2 + 2 2 + 2 + 2 2 + 2 + 2

1 + 1 + 1 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1
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P oueu (7) −→ O∗u(7) −→ P oueu (7)

7 6 + 1 7

5 + 2 4 + 2 + 1 5 + 2

5 + 1 + 1 3 + 2 + 1 + 1 5 + 1 + 1

3 + 3 + 1 3 + 3 + 1 3 + 3 + 1

3 + 2 + 2 2 + 2 + 2 + 1 3 + 2 + 2

3 + 1 + 1 + 1 + 1 3 + 1 + 1 + 1 + 1 3 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1 + 1

�

3. Conclusion

It might be interesting to study Theorem 1.3 for other partition functions whose parts are

in consideration with parity found in [2] and [4].
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